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ABSTRACT

The method of the variation of the entropy in thermodynamics is presented. It
allows to formulate a simple phenomenological approach for the metastable states, which
allows one to calculate the explicit dependence of the Gibbs Free Energy on temperature,
to calculate the heat capacity and the thermodynamic barrier, dividing metastable and
unstable states, and the thermal expansion coefficient. Thermodynamic stability under
conditions of mechanical loading is considered. The influence of the heating (cooling)
rate on the measured dynamic heat capacity is investigated. A general description of the
metastable phase equilibrium is proposed. Mechanisms of the transition from the
diffusional mechanism of the supercritical nucleus growth to the martensitic one as the

rate of the heating is raised are discussed. The Ostwald's stage rule is derived.
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and cooling; diffusional and martensitic transformation; Ostwald's stage rule.



1. INTRODUCTION

The method of the entropy variation in thermodynamics was proposed by the
author in [1]. Let us consider it in detail here.

Let us consider the Gibbs free energy (GFE) per one atom, divided by
Boltzmann's constant, £, as a function of entropy (per atom and divided by %), s,
temperature, 7, and pressure, P :
o=hP,s)-Ts, )
where A is the enthalpy per atom and divided by &.

Let us derive this formula. Each equilibrium state of the system at given 7 and P
corresponds to certain values of the enthalpy, » = h(P,T), and the entropy, s = s(P,T).
Eliminating 7 from the last two formulas we obtain: 4 = h(P,s) and ¢ = h(P,s) — Ts. The
entropy itself depends on P and 7 in an equilibrium state.

Let us regard s as a free variational parameter. Then introduced GFE has a
remarkable property: in a state of equilibrium it has a minimum on s. To show this let us
differentiate the last equation for ¢ with respect to s: (0¢/0s), = (0h/s), — T. In a state
of the equilibrium the right-hand part of this equation is zero: (6h/0s), — T = 0. So the
first condition of a minimum, (0 ¢/0s), = 0, is fulfilled. Now let us differentiate the
expression, (0h/0s), = T, with respect to 7, taking into consideration that 4 is a
composite function of T (h depends on s which is a function of T'): (6h/0s?),(0s/0T'), =
1. Taking into account that when s is a free parameter, (O*h/0s?), = (C*@/0s?), ,and that
in an equilibrium (0s/0T), = ¢, /T (c, is the heat capacity per atom at constant pressure in
the units of the Boltzmann's constant), we obtain:(¢? ¢/ds?), = T/c, > 0 (the second
condition of a minimum).

When A(P,T) is expressed as A(P, s(P,T)) and then s is regarded as a free
variational parameter, so that 2 = A(P, s), a minimum of the GFE on s corresponds to a
state of equilibrium and an equation of equilibrium, (64/0s), = T, determines an explicit
dependence of s on 7. The described approach allows us to calculate explicit

dependencies of the GFE, ¢, and other thermodynamic quantities on 7" and to formulate a



model for metastable states which shows that a thermodynamic barrier, dividing
metastable and unstable states is proportional to (7; — 7')*2 (7; is the temperature of the
absolute instability). Thermodynamic instability under mechanical loading is also
considered.

2. APPROXIMATION

Dependence of 4 on s is different for various systems. This problem is discussed
in detail in [2]. Here let us restrict ourselves with the case when A = h(P, s) can be
expanded in power series in (s —5,). The first three terms of the series are,

I(P,s) = h(P,5) + (To/2)(s - 5y — (T12T)(s 5, @
where s, is the entropy at 7 = 0 (s, = O for the stable systems), 7, and T; are some
parameters, depending on P.

Such an approach is applicable for metastable systems, including disordered (e.g.,
amorphous) ones and for systems which include electrons of conductivity or disordered
subsystems, e.g, disordered grain boundaries in polycrystals, randomly distributed
dislocations or quenched vacancies in a crystal, solid solutions, etc.

3. THERMODYNAMIC STABILITY

Using Eq. (2) one can see that ¢ as a function of (s — s,) has a2 minimum at
Suin = S0 + QT/T)(1 - [1 - (T2} 3)
and a maximum at
Smax = S0+ QTT{L+ [1 = (IIT)]2} . @)

The thermodynamic barrier (per atom and in & units), dividing metastable and
stable areas is described as
AO(T) = QS ) — PSpin) = BBYTNHT T, ~ TP2 )

AN S,y — Sy = AT/T)[1 = (TVT)]2

From Eq. (5) one can see that the thermodynamic barrier vanishes at 7' — 7 . So
T has a meaning of the temperature of the absolute instability. But the system can not
exist up to 7 = T, as the thermodynamic barrier is too small at 7 > 7_; T, which has a

meaning of a real critical temperature, could be approximated as



T,=2.67T31T,. 6)
The system goes from the metastable state at 7 > 7, and accordingly to the
kinetics [3] the higher the heating rate the higher the temperature of the going from the
metastable state.
4. THERMODYNAMIC STABILITY UNDER CONDITIONS OF
MECHANICAL LOADING

At T « T, the thermodynamic barrier does not depend on 7, but it depends on
mechanical stresses. Expansion of the barrier in power series in the tensor of stresses,
Oy, yields
kA = kA(0) — (v/3)0; — g, ™
where Ap(0) = g7, is Ao at o, = 0, g is a coefficient of the order of unity, exact value of
which depends on the rate of change in thermodynamic conditions, e.g., 7,/T (T} is the
rate of change of the temperature), and on the temperature at which the instability
occurs; v has a meaning of the activation volume, o, is a spur of 6, and u, is the elastic
energy per one atom. When Ag ~ g7 the system goes from the metastable state.
According to the given considerations critical shear stress may be estimated as
P, = [2kgG(T, - v, ]2, ®
where G is the shear modulus and v, is the volume per one atom.

To estimate P, using Eq. (8) let us take g =1, v, =2+10-2 cm?, G = 12:10° Pa,

T, ~ T=1370 K. At such values of the parameters Eq. (8) yields P, = 2.48-107 Pa.

Instability under compression and elongation is described in [2].

Thermodynamic instability under loading may often result in a fracture because of
the extreme brittleness or low strength of a more stable phase. This refers to the majority
of the amorphous metallic alloys and other metastable phases, e.g., diamond (the stable
phase - graphite is of a very low strength).

5. THERMAL PROPERTIES

Heat capacity at constant pressure (in k units and per one atom)



¢, = 1(0s/oT), = (TIT)[1 - (T/T))]2. 9)

This formula is derived for the metastable phase, so it is applicable when the
phase is still stable, i.e. for 7< 7, only.

The thermal expansion coefficient was considered in [2]. The results are
applicable for 7 < T, only, like in the previous case.

6. LIMITS OF VALIDITY OF THE THEORY

It is clear that the theory is valid when 47; « 7;,. Both parameters, 7; and 7},
ought to be taken from the comparison with the experimental results. To determine 7,
one ought to use low 7 heat capacity data, and to estimate 7, - the data on the
temperature of the instability at low heating rates.

As an appropriate example one may take 7, = 5-10* K and 7; = 3000 K. Then we
have T, =475 K, s,;, — S, < 0.12 and s,,,,, — 5, < 0.24. In a general case the presented
theory is valid when T « 7, at any rate.

7. HEAT CAPACITY AT FINITE HEATING RATE

Heat capacity, ¢, is usually measured in finite heating (cooling) rate experiments.
For the sake of simplicity let us consider a model of one relaxation time. The relaxation
time, T, may be considerable at low 7 due to barriers, dividing different states of the
system. These barriers may be got through with the aid of tunneling. The rate of the
relaxation of the enthalpy, A4, depends on the deviation of A from it's equilibrium value at
a given 7T, h(T). Let us consider small deviations, when it is possible to use the linear

approximation. In this case the kinetic equation is

(dh/df) + (h—h,)t=0, (10)
where c, is the equilibrium value of ¢. At low T ¢, = T/'T,, h, = T?/2T, and Eq. (10)
yields:

(dA/dT) + hiTx = T*2T,Tx . (11)

Eq. (11) describes the evolution of # = A(T') from the initial value, A, = h(T},), at
the beginning of the experiment. This equation is applicable only for low 7' In this case 1

usually does not depend on 7.



At low heating rates, when 7t « T, 2= h, and ¢ =c, . At high heating rates 7 « T}t
, relaxation is slow, 4 « A, and as follows from Eq. (11), (d#/dT) = ¢ = h,/T;x. As an
example let us consider the case when at =0 T'= 0. In this case we have:
h=(T?2T,) — (Ta/T)T + (T;x)*[1 — exp(-T/T0))/ T, . (12)
Measured dynamic heat capacity is given by the formula:
c=(TIT,y) = (Ta/T)[1 — exp(-T/T;7)] . (13)

Eq. (13) shows that the dynamic heat capacity, ¢ < c,. At low heating rates, 7,7 «
T and ¢ = 7T/T,,. At high heating rates 7'« 7t and ¢ = 7%/27,7;x. Using this expression it
is possible to evaluate the relaxation time, T, and to use it to calculate the static heat
capacity, 7/7T,, with the aid of measured heat capacity, ¢, and Eq. (13).

8. METASTABLE HOMOGENEOUS-PHASE EQUILIBRIUM

First-order phase transitions occur at temperatures different from the equilibrium
of the phases temperatures, 7,, for the phases with fixed compositions. The transition to
the higher-temperature phase requires overheating and that to the lower-temperature
one, overcooling. The transition may involve various mechanisms dependent on the
temperature variation rate. At low heating (cooling) rates the diffusional mechanism
prevails, while the martensitic one does so at high rates. The scope for these is governed
by the thermodynamic conditions in the superheated (supercooled) phase and is governed
by the height of the barrier, separating the state of an atom in equilibrium with the
metastable phase from the other states, as well as by the kinetic conditions: temperature
variation rate, diffusion coefficients, etc.

Let us consider a superheated metastable phase. Let us expand the enthalpy in a a
power series in the deviation of s from it's equilibrium value, s, at 7, . The first four terms
of the series are:

h(P,s) = h(P,s,) + T (s —s,) + (Toy/2)(s —s,)? — [T Y12T, - T,)I(s —s.)3. (14)
This expansion is valid for s — s, « 1; in other cases it can be considered as a model
representation for A describing the system in the metastable state for

S = Smin = S T 20T~ LY T, {1 - U(T; - DAT; - TV (15)



and in unstable equilibrium for

5= Sy = 56 + 2[(T, ~ TYT {1+ (T, - DT, — T.)]"} . (16)
It is noteworthy that s, —s, <2(7; - T,)/1, and s, —5, <4(T; - T,)/T;. So Eq. (14) is
valid for 4(T, - T,) « T,

The first-order transition occurs by the more stable phase nucleating and the
nuclei larger than the critical ones growing by atoms in equilibria with the metastable
phase passing to a state of the equilibrium with the atoms in the nuclei. An atom in
equilibrium with the metastable phase is in a potential well, whose bottom is defined by o

(5, and the crest by ¢(s,,,

AQ(T) = O(Sprax) = P(Seuin) = (83T —T) 2 (T 1)1 - (T'T))2. (17)

Eq. (17) shows that the height of the barrier tends to zero as 7" approaches 7; in

), so the barrier height is described by

accordance with the 3/2 law.

Under the isothermal conditions the transformation can occur for 7 = Ae(7)
because the individual atoms overcome the barrier and attach to the nuclei by diffusion if
the kinetic conditions allow it. At high heating (cooling) rates there may be a substantial
superheating (supercooling). As the rate increases, 7 — T, and the barrier height
decreases. At sufficiently high rates, the height is reduced so much as to become
unimportant and the diffusion-limited growth is replaced by the martensitic one.

9. METASTABLE-PHASE THERMAL PARAMETERS

The specific heat at constant pressure,
¢, = T@s/0T), = (TITy)(T; - TH(T, - 2, (18)
has a square root singularity at 7;, which should become more prominent as the rate
increases and thus the actual transition temperature approaches 7.

The thermal expansion coefficient is discussed in [4].

10. DISCUSSION
The entropy as a free parameter gives explicit 7" relationships for the barrier

separating the states, the specific heat and the thermal-expansion coefficient; the

approach may be useful in other cases, e.g., if there is a set of the intermediate



metastable phases between the two major ones, which correspond to minima in ¢ with
respect to s, in which case slow uniform heating with constant entropy increase causes
the sample to enter the corresponding minima in order of increasing entropy (and in the
reverse order during cooling), i.e. in a sequence corresponding to the Ostwald's stage
rule.

The approach may be useful in other cases also. In [4] the metastable states in
AB; alloys are considered and the same approach is applied to the second-order

transformations.
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